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Abstract 
 
 
Automated Driving Systems (ADS) are set to revolutionize the transportation system. In this 
project, the research team led by the Virginia Tech Transportation Institute developed and 
documented a concept of operations (CONOPS) that informs the trucking industry, government 
agencies, and non-government associations on the benefits of ADS and the best practices for 
implementing this technology into fleet operations.  

The sections of Chapter 5 provide guidance on a range of topics for fleets to consider and apply 
when preparing to deploy ADS-equipped CMVs in their fleet. The topics cover fleet-derived 
specifications, ADS installation and maintenance, ADS inspection procedures, driver-monitor 
alertness management, insuring ADS-equipped trucks, identification of ADS safety 
metrics/variables, ADS road assessment, and data security/transfer protocol and cybersecurity 
best practices. 

This section explores the integration of Driver State Monitoring (DSM) technologies with 
Automated Driving Systems (ADSs) in commercial motor vehicles (CMVs). The research 
identifies key challenges and opportunities in leveraging DSM to enhance safety operator 
vigilance and readiness during ADS operation. Through a three-phase approach, including a 
literature review, industry interviews, a technology scan, and on-road testing, the study 
highlights the complexities associated with DSM-ADS integration. Findings underscore the need 
to improve the accuracy and reliability of DSM systems to mitigate false alarms and inaccuracies 
that may compromise ADS decision-making. Furthermore, the study emphasizes the importance 
of designing DSM technologies as supportive tools for safety operators rather than strict 
supervisors. Future research directions include enhancing DSM system performance across 
varied driving conditions, exploring their impact on safety operator behavior, and investigating 
their role in informing ADS decision-making processes. By addressing these challenges and 
pursuing outlined research avenues, stakeholders can advance the understanding and 
implementation of DSM technology in the context of automated driving, fostering safer 
transportation systems.  

This report may be useful to fleets, ADS developers, monitoring technology developers, policy- 
and decision-makers, and safety operators in recognizing the need for implementation and the 
current capabilities of DSM technologies.  

The following chapter has been extracted from the final report. For access to the full 
report, see this link: https://www.vtti.vt.edu/PDFs/conops/VTTI_ADS-
Trucking_CONOPS_Final-Report.pdf 

 

 

  



5. GUIDELINES  

5.4 TEST DRIVER STATE MONITORING 

On April 6, 2022, a CMV operating with automation active while being monitored by a test 
driver or safety operator veered left into a median.(1) The safety operator was able to regain 
control of the vehicle, and the CMV suffered only minor scrapes. However, the integrity of 
testing prototypical ADS on public roadways was again brought into question.  

The Automated Vehicle Safety Consortium (AVSC) is considered the guiding body for 
developing principles to lead industry-wide standards for ADSs. The AVSC(2) published a “best 
practices” report for in-vehicle fallback test drivers, or safety operators. These terms are 
considered synonymous, but this section will refer to these drivers as safety operators. The role 
of a safety operator is to “supervise the performance of prototype Level 4 (L4) ADS-operated 
vehicles in on-road traffic for testing purposes.”(3) The safety operator is responsible for 
responding to unexpected scenarios where the ADS acts incorrectly or even hazardously; 
however, these failure events are not frequent. Therefore, these drivers are highly trained in 
vigilance maintenance and uphold strict selection criteria. In addition to taking frequent breaks to 
maintain vigilance, drivers are prohibited from tasks that may impede their ability to drive a 
vehicle. These tasks include using personal electronic device use, eating, smoking, vaping, and 
alcohol or drug use. Unique to safety operators, an attentive driver is discouraged from engaging 
in conversation irrelevant to the driving task and is encouraged to always maintain hand position 
on or near the steering wheel.  

The necessity for these operators is evidenced by the April 6 incident in which an ADS-equipped 
CMV executed a dangerous maneuver on a public roadway. The attentive safety operator reacted 
swiftly and correctly to prevent a potentially more serious crash. A similar incident detailed in a 
2019 National Transportation Safety Board Accident Report(4) involved a light-vehicle safety 
operator driving an Uber equipped with Uber’s ATG Developmental ADS. Unlike the attentive 
safety operator who had both hands on the wheel and was constantly monitoring the roadway to 
anticipate a takeover, this operator was interacting with a personal device when the system 
transferred emergency control due to a foreign object detected in the roadway. Due to several 
factors, including the driver’s inattention, the safety operator did not assume control of the 
vehicle and it fatally collided with a pedestrian.  

These cases exemplify the need for an actively engaged and attentive safety operator when 
operating L4 ADS-equipped vehicles. The AVSC report(5) defines criteria for safety operator 
selection, training, and expectations and recommends equipping ADS test vehicles with a driver 
state monitoring (DSM) system to ensure the driver is fit to assume control during an emergency 
takeover request. DSM systems are designed to track metrics (i.e., physical, physiological, 
psychological, and/or behavioral variables) that may be indicative of driver inattention or 
inability to react appropriately. There are many applications of DSM, including those for ADS-
equipped vehicles. Although there are many recommendations from the AVSC, there are no 
standardized requirements for individual fleets. This means each ADS developer is responsible 
for assigning specific tasks to the safety operators. Therefore, it is unknown exactly what a safety 
operator’s responsibility is to ensure the vehicle is operating appropriately. 



The purpose of this investigation of DSM technology and practices was to compile available 
information through a detailed literature review and outreach about DSM and compare 
commercially available systems on the market through a technology scan and exploratory 
evaluation. The following sections outline the findings from each of these collection techniques. 

5.4.1 Information Collection 
The literature review sought to establish information about specific driver state metrics and 
thresholds for takeover ability relevant to a CMV safety operator. For example, it was unclear 
which physiological or behavioral metrics (e.g., heart rate [HR], eye-glance behavior, posture, 
hand position) translate to specific driver capacity. Specifically, this literature review determined 
specific driver characteristics that may impact readiness to take control of an ADS vehicle and 
the metrics or thresholds indicative of a driver’s state. Additionally, the review considered the 
differences in thresholds of driver states necessary for a safety operator who is highly trained as 
an ADS-equipped CMV safety operator versus a typical CDL holder operating an ADS-equipped 
CMV. For example, a safety operator may be held to a higher attentional standard due to the 
unpredictability of an ADS malfunction. For the benefit of future research, the results from this 
literature review provided insight into the types of DSM technologies (i.e., sensors) that warrant 
specific testing in an ADS-equipped CMV to monitor the safety operator appropriately.  

5.4.1.1 Literature Review Methodology 
The initial literature search involved reviewing databases in the transportation industry such as 
the Transportation Research Information Services & Documentation Database (TRID), the 
Repository & Open Science Access Portal (ROSAP), and the Virginia Transportation Research 
Council (VTRC) database. The search was expanded to target publications from the Institute of 
Electrical and Electronics Engineers (IEEE), ResearchGate, ScienceDirect, and PubMed to 
consider physiological measures of human state not yet introduced to the transportation industry. 
The query terms used for each database included driver monitoring and state detection, and more 
specific searches for each individual driver state included distraction detection, drowsiness 
detection, etc. The resulting literature consisted of 91 papers detailing DSM research and criteria 
for defining various human states. Several papers were excluded from the final review due to (1) 
irrelevance to the driving context such as blood work or other invasive medical devices, (2) a 
lack of converging evidence, and (3) investigating irrelevant features of DSM relative to the 
scope of this literature review such as light-vehicle applications or vehicle-based metrics. Eighty-
one papers remained for inclusion in the final literature scan. These papers were selected based 
on their relevance to DSM in the context of ADS-equipped CMVs or their contribution to 
understanding how to define and monitor a driver’s state while in a vehicle. The following 
sections detail the results of the literature review and provide an understanding of how to 
effectively monitor a safety operator using DSM technology.  

5.4.1.2 Driver Sate Monitoring  
Halin et al.(6) conducted the most comprehensive review to date of DSM literature and relevant 
concepts. This review builds on Halin et al. by considering the unique perspective of the safety 
operator and adding updated technology, but the current review is narrower in scope due to 
solely addressing DSM in the context of safety operators of prototype ADS-equipped CMVs. 
The five important driver states discussed in this paper are drowsiness, mental workload, 
distraction, emotions, and driving under the influence. The following sections outline (1) how the 



literature defines these respective states, (2) the behavioral and physiological metrics used to 
indicate the respective states, (3) sensors that can be used to assess the metrics in a driving 
context, and (4) considerations for safety operators.  

The most common and accurate identifiers of a degraded driver state are driver performance 
variables determined by vehicle-based metrics.(7,8) Vehicle-based metrics include following 
distance, lane deviation, and speed variability that can indicate diminished driving ability. 
However, Leicht et al.(9) pointed out that vehicle-based metrics only change once a driver’s state 
begins to impact performance of the vehicle. Thus, a more proactive detection method is needed 
to effectively prevent performance degradation. Additionally, ADS-equipped CMVs are 
designed to maintain control of the vehicle, so vehicle-based metrics are irrelevant measures for 
safety operators who are monitoring the ADS for malfunctions. For the successful integration of 
DSM systems into ADS-equipped CMVs, the determination of driver state should be done 
proactively and through measures that do not require a driver’s influence on the vehicle. For 
these reasons, all indicators discussed in this paper are driver-based. Driver-based metrics 
include behavioral indicators (i.e., yawning, holding a phone, eye position) and physiological 
indicators (i.e., HR, pupil dilation) that monitor a human’s level of awareness regardless of the 
ADS operating performance.   

5.4.1.3 Driver State: Distraction 
Driver distraction is defined as a mismatch between a driver’s attention and the attention needed 
to safely perform the tasks required to operate the vehicle.(10) These “activities” fall into four 
main categories based on the source of distraction: visual, manual, auditory, and cognitive. 
Visual resources are needed for most driving tasks, while the remaining tasks are allocated to 
auditory, tactile, and haptic resources.(11) Therefore, visual distraction is one of the most 
frequently studied forms of distraction and is caused by activities such as reading a text message 
or any activity that causes the eyes to look away from driving-relevant information. Safety 
operators are prohibited from using cell phones, but cell phones are only one cause of visual 
distraction. Manual distraction occurs when the hands, body, or feet required for the driving task 
are performing irrelevant activities such as reaching for a purse or adjusting the air conditioning. 
Cognitive distraction, such as being lost in thought or problem solving, is one of the most elusive 
forms of distraction because it is difficult to observe. The final category is auditory distraction, 
which can occur when a driving-irrelevant sound (e.g., radio, music) masks a driving-critical 
sound (car horn, emergency vehicle) or when an auditory input such as speech uses cognitive 
resources that diminish performance on a driving task.(12) A task may result in one or some 
combination of all these forms of distraction. For example, texting while driving is considered a 
visual-manual distraction due to the use of both the hands and eyes to complete the task, but it 
also requires cognitive resources. Although many researchers have defined distracted driving, 
few have defined the parameters of an attentive driver. Kircher and Ahlstrom(13) defined an 
attentive driver as one who sufficiently samples enough information to meet the demands of the 
driving task. Therefore, an effective DSM system should be able to accurately identify each form 
of distraction to alert the ADS of possible inattention.  

Gaze patterns are one of the best behavioral indicators for determining manual and visual 
distractions. There are different ways to characterize gaze behavior. One method is Percent Road 
Centre (PRC), or the percentage of gaze points that fall within the road center. If a driver is not 



looking at the road center for the majority of the time interval collected, they are considered 
distracted. The average PRC of a baseline driver is 70% to 80%. PRC above 92% is considered 
cognitive distraction and below 58% is considered visual distraction.(14) This method fails to 
consider other areas of the vehicle where a driver may look to assess safety-relevant information 
such as mirrors or cross traffic. Therefore, a more popular method used to determine gaze 
behavior is gaze duration, which assesses whether a driver is actively looking in a direction 
relevant to the driving task. Two methods are commonly used to identify gaze behavior: 
eye/facial landmark detection or head position. The driver’s head position and eye pose are 
determined by using computer vision detection of major facial landmarks and pupil detection. An 
algorithm then classifies the positions of these features using decision pruning. Fridman et al.(15) 
considered six major “driving-relevant” regions: road, center stack, instrument cluster, rear-view 
mirror, and left and right mirrors. One issue with this method is that it fails to account for 
driving-relevant tasks outside these specific gaze zones, such as cross traffic when entering an 
intersection. A proposed method to account for this issue is the attentional buffer technique. 
Ahlstrom et al.(16) used an attentional buffer of 2 seconds in any gaze direction to define 
“situational awareness” as opposed to attention. These authors asserted that if the driver looks 
too long in any one direction, they are not gathering and searching for more information relevant 
to the driving task. Several studies support the attentional buffer due to findings indicating that 
longer fixations denote cognitive distraction and shorter fixations denote visual distraction, 
regardless of direction.(17,18 ,19) 

Another method used to detect driver distraction is monitoring the driver’s positions and 
interactions with other objects in the vehicle. Yan et al.(20) used hand monitoring and driver 
position algorithms to assess six categories of behavior: talking on the cell phone, eating while 
driving, shifting gears, hands on wheel, phone use, and smoking. Due to the lack of 
standardization of safety operator tasks, it is unclear what secondary tasks a safety operator may 
be able to perform when monitoring the ADS-equipped CMV. Zhao et al.(21) and C. Yang et 
al.(22) outlined the benefit of monitoring posture and foot position as a way of determining 
whether a driver is ready to take over a vehicle. If a driver’s feet are not near the pedals, nor their 
hands near the steering wheel, they cannot be expected to react to an emergency takeover request 
in a timely manner. Safety operators are encouraged to keep their hands near the wheel at all 
times, yet each fleet can individually decide the extent to which they do so. Therefore, a DSM 
system specific to safety operators should assess whether a driver is abiding by this practice.  

Researchers have mostly used camera-based systems to monitor observable behaviors because 
computer vision and AI can be used to extract information from the driving scene. Several 
studies used infrared light (IR) cameras to record video from participants due to their ability to 
capture changes in facial landmarks in complete darkness. The cameras were all mounted on the 
dashboard pointed at the driver’s face.(23,24,25) Other researchers used an eye tracking software 
that combined information about head movement, eye opening, pupil activity, and blink behavior 
to understand distraction in two different camera-based studies.(26,27) All aforementioned studies 
commented on the difficulty of using camera-based detection due to the interference of the 
driving environment. For example, varying levels of illumination, vibration, and items that can 
block the sensors are typical challenges in determining the type of sensors to use. IR lights or 
cameras with IR technology help with nighttime driving because they illuminate the human’s 
face even in complete darkness, but they are sometimes impeded by drastic variations in lighting 
such as broad daylight.(28)  



One unique exception to the benefit of observational measures of distraction is cognitive 
distraction. It is difficult to outwardly observe cognitive distraction, so a few researchers have 
investigated the value of physiological measures such as brain activity and attempted to assess 
this type of distraction.(29,30) These studies suggest that arithmetic and conversational loads cause 
the focal points of the eyes to narrow and overall gaze direction to become concentrated to a 
particular range. Therefore, by combining pupil diameter, gaze direction, and HR, these studies 
were able to improve the detection rate over simply using gaze behavior. McDonald et al.(31) 
concluded that perinasal perspiration, palm electrodermal activity (EDA), HR, and breathing rate 
were effective in distinguishing an attentive driver from a cognitively distracted one. Although it 
may be difficult to assess the masking qualities of sounds in the vehicle to safety critical sounds 
in the environment, auditory distraction that induces cognitive distraction elicits similar behavior 
in drivers.(32) However, these metrics were combined as one illustration of driver state, so it is 
difficult to say if one of these measures alone was the contributing factor or if using all metrics 
combined produced the most accurate results. Similarly, although these metrics were seen as 
valuable contributors to the picture of driver state, it is questionable how feasible it is to put these 
sensors in a driving environment or implement them in an ADS-equipped CMV. Safety operators 
are banned or strongly discouraged from most visual-manual distraction activities (cell phone 
use, eating, smoking, etc.), so they are most susceptible to cognitive distraction. Therefore, extra 
care should be taken to find effective methods for detecting cognitive distraction.  

5.4.1.4 Driver State: Drowsiness 
Drowsiness is the physiological desire to fall asleep.(33) This is not to be confused with fatigue, 
however, which is the feeling of exhaustion or tiredness that occurs after mental and physical 
over- or under-exertion.(34) Although the motivations and variables that influence each of these 
states should be differentiated, their effect on driver safety is similar. Both states are 
characterized by mood alteration, impairments of psychomotor performance, poor decision-
making, reduced reaction time, and other attentional issues that all increase performance errors 
and crash risk.(35,36) Drowsiness and fatigue are major concerns for CMV drivers, as the demands 
of a professional driving career often involve irregular sleep hours, long periods of 
hypovigilance, and highly demanding tasks.(37,38) In this report, drowsiness monitoring will be 
covered in this section, while fatigue, which is typically indicated by mental workload, will be 
discussed in the following section. 

Because drowsiness is a physiological impulse similar to hunger or thirst, it is most accurately 
measured through physiological indicators. The most researched physiological indicators for 
drowsiness are heart rate variability (HRV), skin conductance, breathing rate, pupil response, and 
brain waves.(39) Sahayadhas et al.(40) illustrated that HRV can be a valid physiological measure of 
drowsiness. An electrocardiogram (ECG) is a common method used to measure HRV. However, 
direct contact with skin is necessary, which causes issues for use while driving or discourages 
people from using it consistently. There are some watch models, finger rings, and patches 
available on the market,(41) but these devices require the user to put them on, keep them charged, 
or keep them clean; therefore, the feasibility of implementing these devices into ADS-equipped 
CMVs is questionable. Similarly, CMV drivers frequently enter and exit the vehicle to unload 
cargo and interact with customers, so any device that requires constant removal or adjustment 
would be especially bothersome. Another valid measurement of drowsiness, often used in the 
medical field, is monitoring electrical brain activity.(42) Using an electroencephalogram (EEG), 



the activity of theta band (4–8 Hz), which is associated with drowsiness, can be compared to the 
beta band (13–25 Hz), which is associated with alertness, to measure drowsiness. Awais et al.(43) 
combined an EEG sensor that measured brain activity and an ECG sensor that measured HRV 
and achieved a 90% accuracy rate for detecting drowsiness, which illustrates a common 
understanding that combining methods is more effective than using a single indicator. However, 
EEG and ECG devices are highly invasive when considering the driving environment. Some 
research has investigated the effectiveness of wearable technology or sensors that are integrated 
into steering wheels, seat belts, or seats, but the motion artifacts from wearable technology 
testing can decrease the clarity of the signals.(44, 45, 46, 47) Jeanne et al.(48) investigated the use of a 
camera-based HR monitoring system in the variable lighting conditions that characterize the 
driving environment. An IR-based remote photoplethysmography (PPG) camera system was 
used to detect micro-blushes in the skin of a driver to measure the HR and HRV. The authors 
achieved a 99% accuracy rate when comparing this with ground truth metrics. Another study 
achieved similar results by using PPG imaging.(49) Although HR has shown less correlation with 
drowsiness than HRV, there are studies that have shown correlation between decreased HR and 
self-rated sleepiness.(50) Considering the improvements from combining multiple metrics, a case 
can be made for improving the validity of HR as a measure of drowsiness by combining it with 
other camera-based indicators.  

Behavioral indicators of drowsiness are more easily identified using camera-based methods. 
Wierwille and Ellsworth(51) developed a continuum of rating drowsy behaviors called the 
Observer Rating of Drowsiness (ORD). This continuum defines the stages of drowsiness by 
observable mannerisms such as rubbing the face or eyes, scratching, glassy-appearance, fixed 
gazes, and eventually prolonged eye closures, lack of activity, and microsleeps. These 
observations were made by human raters, and the study concluded that rater assessment is a 
viable method of drowsiness assessment using video images of the vehicle operator. In an 
experiment reviewing naturalistic driving data, drowsy drivers were classified based on similar 
observable behaviors such as blink rate, yawning, stretching, and heaviness of the eyelids.(52) 
Barr et al.(53) used a computer vision algorithm that tracks facial features and body movements to 
identify instances of drowsiness. Considering the results from Wierwille and Ellsworth, future 
machine learning algorithms may act as “raters” to provide drowsiness measures in real time. 
Several eye-based metrics have shown potential in drowsiness monitoring due to the relationship 
between eye movements and sleep stages.(54) Hanowski et al.(55) referred to the percent of eye 
closure (PERCLOS) as the “gold standard” of drowsiness detection and argued that it is the most 
valid driver-based drowsiness measure. PERCLOS is the percentage of eye closures over the 
pupil over time where drowsiness is defined as the amount of time in 1 minute that the eyes are 
at least 80% closed. This measure describes eye behavior as “droops,” as opposed to blinks, to 
characterize the slower movement of the eyes as a human becomes drowsy.(56) Dinges et al.(57) 
found that PERCLOS was the only drowsiness metric evaluated that consistently covaried with 
the validation criterion for drowsiness. Hanowski et al. mentioned that although PERCLOS is a 
highly valid measure for drowsiness, the limiting factor is the quality of the sensor used to 
measure PERCLOS due to the highly dynamic driving environment (e.g., lighting variation) and 
driver variability (glasses, hats, etc.). Therefore, the DSM effectiveness can only be as strong as 
the technology being used, and the strongest technologies are those that account for this dynamic 
driving environment.  



Meyer and Llaneras(58) recognized that using more “gross level” behavior such as head position, 
mirror checks, yawning, or stretching may be supplementary information that can corroborate the 
decision to classify a driver as drowsy. Several studies have used drivers’ facial expressions 
(e.g., brow raising, yawning, jaw drop) gathered from IR-camera video recordings to classify a 
driver as drowsy.(59,60,61) Lew et al.(62) found that drivers actually yawned less in the moments 
leading to critical drowsiness, not more; therefore, yawning may only be indicative of the earlier 
stages of drowsiness and not a reliable indicator of late-stage drowsiness. This study also 
supported the conclusion that blink rates such as PERCLOS and slow blinking were the most 
accurate determinants of drowsiness across all participants.  

Overall, it seems the least invasive method for determining drowsiness is using an IR camera to 
capture PERCLOS, HRV, or facial movements. However, further innovation in less intrusive 
technology such as wearables or integration into steering wheels, seats, or seat belts may put 
EEG, ECG, and other physiological measures at the forefront of drowsiness detection in DSM 
systems. 

5.4.1.5 Driver State Mental Workload and Fatigue 
As mentioned previously, drowsiness and fatigue are not synonymous in this paper. Much of the 
literature on fatigue is really referencing drowsiness, or the physiological urge to fall asleep. This 
section defines fatigue as it is related to cognitive load, or mental workload. Williamson et al.(63) 

defined fatigue as the state of reduced mental alertness that impairs performance of cognitive and 
psychomotor tasks, including driving. According to the Yerkes–Dodson law (Figure 45), the 
optimal state of an operator is enough stimulation to stay engaged in the driving task without 
being bored or over-stressed.(64)  



 
Figure 1. Diagram. Illustration of the Yerkes-Dodson Law of Arousal. As arousal level increases from sleep, 
the performance level increases until it reaches an optimal state. As arousal increases past this optimal state, 

performance decreases due to overloading of limited resources. 

Therefore, with high-level automation, one of the main concerns for safety operators is the 
monotony of monitoring an ADS-equipped CMV without really “driving.” Low vigilance can 
impact a driver’s reaction time, efficiency, decision-making capabilities, situational awareness, 
and, therefore, safety.(65,66) Additionally, to mitigate fatigue and drowsiness, drivers naturally 
tend to engage in secondary tasks to generate stimulation, potentially leading to distraction-
related inattention errors that further decrease safety.(67) However, protective effects of hands-
free phone use and CB radio use have been reported with CMV drivers.(68) These tasks may 
stimulate the driver enough to mitigate the effects of fatigue without adding to visual-manual 
distraction. It is important to note that safety operators are prohibited from common in-vehicle 
distractors such as cell phones and are even prohibited from non-task-related conversation with 
other passengers. Therefore, the current regulations on safety operators may be so stringent that 
they add to the performance decrement experienced by prolonged periods of vigilance. Statistics 
show that between 10% and 20% of all traffic crashes are due to drivers with a diminished 
vigilance level.(69) Protective effects of secondary task engagement specific to safety operators 
should be investigated, which may lead to alternative standards for safety operator behaviors.  

The status of a human’s cognitive workload is best assessed using physiological techniques. EEG 
results show that changes in alpha and theta waves indicate high cognitive load.(70) Yamamoto 
and Matsuoka(71) showed decreases in performance occur when long-lasting theta waves are 
present in EEG results. HR and HRV are also shown to increase with higher driver workload, 
and decreased HR and HRV are correlated with low driver workload.(72,73,74) Although 
physiological indicators are highly indicative of fatigue, there is still an issue with the 



intrusiveness of the technology that make it unrealistic in real-world driving environments. 
Wierwille(75) suggested that computer vision is the most promising noninvasive driver 
monitoring technology for monitoring driver alertness. Rahman(76) used a video-based computer 
vision system and IR cameras to achieve a correlation of 0.96 between HR, saturation of 
peripheral oxygen (SpO2) monitoring, and fatigue measures. Eye-based metrics are also highly 
correlated with fatigue and mental workload. Barr et al.(77) used computer vision to assess 
PERCLOS with an IR camera. Wang et al.(78) used an IR-illuminated space with a high-
definition camera to track eye blinking and closures, the 3D gaze of the eyes, and head/facial 
feature positions even under highly variable lighting conditions characteristic of a driving 
environment. Nakano et al.(79) illustrated that eye blink frequency increases as cognitive load 
increases. The study found that the average person spontaneously blinks at a rate of 15 to 20 
times per minute, so an increase in this rate is usually an indicator of increased cognitive load. 
Another important consideration of fatigue is that the likelihood of experiencing fatigue 
increases with task time.(80) Therefore, the machine learning algorithms assessing the state of the 
driver should consider the length of time the driver has been on the road.  

5.4.1.6 Driver State: Emotions 

There is not a common definition of emotion in the literature. Many authors have recognized the 
difficulty in producing a consistent definition of emotion due to the subjective and multifaceted 
nature of human beings.(81) Young(82) argued that the reasons for this difficulty are the variations 
in perspectives and the idea that emotions are individually experienced. For the purposes of this 
paper, emotion is defined as the “mood” of a driver, or the arousal of a driver based on external 
or internal circumstances. The four most commonly researched driving-related emotions are 
happy, sad, angry, and neutral.(83,84) Zimasa(85) emphasized the relationship between mood and 
attention. The author argued that as mood changes, the attention placed on the driving task is 
diminished as the person diverts attention to the cause of the mood-altering event. The impacts of 
aggressive driving and road rage are well-established effects of negative moods.(86) Knapton(87) 
stated that the risk of a crash is increased by 14% when a driver is experiencing emotions such as 
sadness or anger, which is correlated with effects such as aggressive driving and road rage. 
Dingus et al.(88) analyzed naturalistic driving data and found that drivers exhibiting clearly 
negative emotions such as anger, sadness, crying, or emotional agitation increased crash risk by 
9.8 times. Techer et al.(89) showed that drivers of higher levels of ADS-equipped vehicles tended 
to grow frustrated with the “cautious” driving style of the vehicle and lack of control. Van 
Huysduynen et al.(90) supported this idea by adding that drivers of lower-level ADS-equipped 
vehicles take control when they feel the driving style of the vehicle is disrupting the flow of 
driving. This is of particular interest to safety operators due to the novelty of the vehicles being 
tested. These drivers may grow frustrated with the behaviors of drivers around the vehicle and 
the subject vehicle’s ADS.  

Anger and stress cause a high arousal state for the body and are well monitored through 
physiological metrics.(91) HR and electrodermal activity are the indicators with the highest 
correlations to high-arousal emotions.(92,93) As mentioned previously, the limiting factor in using 
devices measuring HR and electrodermal activity is the sensor, as it must (1) accommodate the 
variability in the driving environment, (2) not impede the movement or visibility of the driver, 
and (3) be comfortable to wear in real-world working conditions. For these reasons, emotion 
detection currently relies on the idea that facial expressions are an outward display of a driver’s 



emotions.(94) Gao et al.(95) proposed a real-time driver emotion monitoring system using a 
camera-based method and a highly trained convolutional neural network to analyze facial 
expressions. Kowalczuk et al.(96) used a similar method by exploiting the facial emotion 
recognition (FER) algorithm that assesses a person’s emotional state by collecting facial 
landmark information. This study pointed out that the detection accuracy and classification of 
emotional state based on facial features is only as capable as the machine learning algorithm 
being used to assess it. Similarly, the driver’s head position can decrease the accuracy of the 
computer vision information acquisition. Therefore, when considering which method to use in a 
DSM application, technology is the limiting factor. Tavakoli et al.(97) noted an interesting caveat 
in the capability of emotion detection using facial features. The authors emphasized the 
individual nature of human expression and illustrated that natural face states may mimic 
expressions of anger when the person is actually experiencing a neutral state. Similarly, some 
authors argued that there are cultural variations in the appearance of basic facial expressions of 
emotion between Western and Eastern cultures.(98,99,100) These findings support the need for 
combined data sources such as physiological measures with diversely trained facial detection 
algorithms to classify a driver’s emotional state more accurately across all driver types.  

5.4.1.7 Driver State: Under the Influence 
Halin et al.(101) defined driving under the influence (DUI) or driving while intoxicated (DWI) as 
the operation of a vehicle by a driver who has consumed alcohol or drugs to the point where their 
performance is significantly impaired compared to someone who had not consumed alcohol or 
drugs. In 2018, 25% of fatal motorcycle crashes and 21% of fatal light-vehicle crashes involved 
a blood alcohol concentration (BAC) of 0.08.(102) The prevalence of DUI among CMV drivers is 
lower, as 3% of CMV drivers involved in fatal crashes had a BAC of 0.08 or higher.(103) This 
may be because CMV drivers are considered to be professional drivers and their legal BAC limit 
is 0.04. However, in a study conducted by Crouch et al.,(104) fatal CMV driver crashes were 
analyzed in eight states over a 1-year period. One or more drugs were detected in 67% of the 
drivers, and 33% had detectable blood concentrations of psychoactive drugs/alcohol. The most 
commonly found drugs were alcohol followed by cannabinoids. If the delta-9 concentration of 
1.0 ng/mL and/or a BAC of 0.04 or higher were present, the impairment of the driver was found 
to be the cause of the crash.  

The majority of drug- and alcohol-related traffic incidents are found after the fact. A proactive, 
real-time approach to monitoring the drug and alcohol use of a driver should be considered. The 
current standard for preventing drunk driving is using an alcohol interlock device (AID) on a 
vehicle. The driver is expected to provide a deep-lung breath sample by blowing into a plastic 
tube before starting the vehicle. Ferguson and Draisin(105) pointed out that this process, although 
highly effective and accurate, takes time and is difficult for some drivers due to the volume, 
flow, and exhalation time. Similarly, they commented that these systems need frequent 
calibration and constant maintenance due to the condensation of breath. Fournier et al.(106) 
proposed a driver alcohol detection system for safety (DADSS) that measures a driver’s BAC 
non-invasively through either tissue spectrometry or distant spectrometry. This solution does not, 
however, allow for the real-time monitoring of the state of the driver and does not prevent the 
driver from drinking alcohol after starting the engine. Celaya-Padilla et al.(107) created a 
continuous monitoring device by using a metal oxide semiconductor that detects the presence of 
alcohol vapor in a driver’s breath. This method achieved an accuracy of 0.989, but the authors 



mentioned that improvements could be made by moving the sensors closer to the driver. Several 
studies have investigated camera-based methods that identify saccadic eye movements and gaze 
position of the driver.(108,109) Sussman(110) found success using eye unsteadiness as a method for 
alcohol detection. Identifying an intoxicated driver can also be achieved by using an IR camera 
that capitalizes on the expansion of blood vessels in the forehead when a person is under the 
influence of alcohol, the pupil dilation of the driver, and differences in body 
temperature.(111,112,113) Most research has been conducted in the context of alcohol impairment; 
monitoring the impacts of over-the-counter drugs and drugs in general is not well understood in 
the driving context.  

5.4.1.8 Summary of Literature 
Table 29 summarizes the indicators and sensors used in DSM literature to define each of the five 
driver states. The indicators are characteristics of humans (behavioral or physiological) that can 
be used to signify a driver’s state. The metrics are the specific trends or methods used to 
determine whether the indicator is signifying a negative or neutral state. Sensors are the 
technology used to capture or assess the information.  

Table 1. Summary of findings. 

Driver State Indicators Metrics Sensors 

Distraction Head Position Looking at driving-relevant 
information IR Camera + Computer Vision 

Distraction Gaze Behavior PRC IR Camera + Computer Vision 
Distraction Gaze Behavior PRC Eye Tracking  
Distraction Gaze Behavior Gaze Duration IR Camera + Computer Vision 
Distraction Gaze Behavior Gaze Duration Eye Tracking 
Distraction Gaze Behavior Attentional Buffer IR Camera + Computer Vision 
Distraction Gaze Behavior Attentional Buffer Eye Tracking 
Distraction Posture Hand & Feet Position IR Camera + Computer Vision 
Distraction Posture Hand & Feet Position IR Camera + Computer Vision 
Distraction Posture Hand & Feet Position Seat Monitor 

Distraction Object Detection Cell Phone, Food/Drink, 
Cigarette, Purse, etc. IR Camera + Computer Vision 

Distraction Pupil Diameter Increase/Decreased Size IR Camera + Computer Vision 
Distraction Pupil Diameter Increase/Decreased Size Eye Tracking 

Distraction HRV Increase/Decrease IR Camera + RGB Camera + 
Computer Vision 

Distraction HRV Increase/Decrease Wearable Monitor (Watch, Ring, etc.) 
Distraction HRV Increase/Decrease ECG Electrodes on Body 

Distraction HRV Increase/Decrease Integrated Sensor (Steering Wheel, 
Seat Belt, Seat) 

Drowsiness Posture Slouching, Stretching, 
Touching Face, Slapping Face IR Camera + Computer Vision 

Drowsiness Facial Features 
Droopy Eyes, Mouth Open, 
Brow Angle, Eyes 
Open/Closed 

IR Camera + Computer Vision 



Driver State Indicators Metrics Sensors 

Drowsiness PERCLOS Slow Eye Closure Rate  Eye Tracking 
Drowsiness PERCLOS Slow Eye Closure Rate  IR Camera + Computer Vision 

Drowsiness HR Decrease IR Camera + RGB Camera + 
Computer Vision 

Drowsiness HR Decrease Wearable Monitor (Watch, Ring, etc.) 
Drowsiness HR Decrease ECG Electrodes on Body 

Drowsiness HR Decrease Integrated Sensor (Steering Wheel, 
Seat Belt, Seat) 

Drowsiness HRV Decrease/Increase IR Camera + RGB Camera + 
Computer Vision 

Drowsiness HRV Decrease/Increase Wearable Monitor (Watch, Ring, etc.) 
Drowsiness HRV Decrease/Increase ECG Electrodes on Body 

Drowsiness HRV Decrease/Increase Integrated Sensor (Steering Wheel, 
Seat Belt, Seat) 

Drowsiness Brain Activity Theta & Beta Wave Activity EEG Electrodes on Body 
Drowsiness Brain Activity Theta & Beta Wave Activity EEG Headband/Hat 

Drowsiness SpO2 level Decreases IR Camera + RGB Camera + 
Computer Vision 

Mental 
Workload PERCLOS Slow Eye Closure Rate  Eye Tracking 

Mental 
Workload PERCLOS Slow Eye Closure Rate  IR Camera + Computer Vision 

Mental 
Workload HR Increase IR Camera + RGB Camera + 

Computer Vision 
Mental 
Workload HR Increase Wearable Monitor (Watch, Ring, etc.) 

Mental 
Workload HR Increase ECG Electrodes on Body 

Mental 
Workload HR Increase Integrated Sensor (Steering Wheel, 

Seat Belt, Seat) 
Mental 
Workload HRV Increase/Decrease IR Camera + RGB Camera + 

Computer Vision 
Mental 
Workload HRV Increase/Decrease Wearable Monitor (Watch, Ring, etc.) 

Mental 
Workload HRV Increase/Decrease ECG Electrodes on Body 

Mental 
Workload HRV Increase/Decrease Integrated Sensor (Steering Wheel, 

Seat Belt, Seat) 

Emotions Facial Expressions Happiness, Neutral, Anger, 
Sadness 

FER Algorithm & IR Camera + 
Computer Vision 

Emotions HR Increase/Decrease IR Camera + RGB Camera + 
Computer Vision 

Emotions HR Increase/Decrease Wearable Monitor (Watch, Ring, etc.) 
Emotions HR Increase/Decrease ECG Electrodes on Body 

Emotions Electrodermal 
Activity 

Increase for Negative 
Emotions Electrodermal Electrodes on Body 

Emotions Electrodermal 
Activity 

Increase for Negative 
Emotions Integrated Steering Wheel 

Under the 
Influence Gaze Behavior Erratic Eye Movements, 

Unsteadiness of Eyes Eye Tracking 



Driver State Indicators Metrics Sensors 
Under the 
Influence Gaze Behavior Erratic Eye Movements, 

Unsteadiness of Eyes 
IR Camera + RGB Camera + 
Computer Vision 

Under the 
Influence Pupil Dilation Pupil Size Increases w/ Drugs 

& Alcohol IR Camera + Computer Vision 

Under the 
Influence Pupil Dilation Pupil Size Increases w/ Drugs 

& Alcohol Eye Tracking 

Under the 
Influence 

Tissue 
Spectrometry Imaging of Micro-blushes  High-resolution Imaging + Computer 

Vision 
Under the 
Influence 

Air Vapor 
Analysis Alcohol Vapors Present in Air Semiconductor Vapor Sensors 

Under the 
Influence 

Blood Vessel 
Dilation Blood Vessels Increase in Size IR Camera + RGB Camera + 

Computer Vision 
Under the 
Influence 

Blood Vessel 
Dilation Blood Vessels Increase in Size IR Camera + Computer Vision 

Under the 
Influence 

Blood 
Temperature 

Blood Temperature Increases 
w/Alcohol 

Temperature Camera + High-
resolution Imaging + Computer Vision 

5.4.1.9 Evaluating the Driver Monitoring System 
Halin et al.(114) divided driver monitoring into two components: (1) characterizing the state of the 
driver and (2) deciding what action to take based on this assessment. The focus of this paper was 
only on the first piece. The second component delves into the study of providing feedback to the 
driver. Boyle et al.(115) asserted that the main goal of the DSM is to improve driver performance 
and safety on roadways. This sentiment falls under the second piece of driver monitoring, for 
performance and safety cannot be impacted unless the driver is aware of his or her degraded 
performance. Therefore, when considering the evaluation of DSM systems, this paper looked 
exclusively at metrics involving the assessment of technology, not the behavior of the driver 
after receiving feedback. Although the reaction of the ADS is important, it is considered out of 
scope as the purpose of this report guideline is to understand DSM technologies.  

Bowman et al.(116) compiled a list of several specifications a DSM system must meet to be 
assessed appropriately. First, the DSM system must be robust or adaptable to the various 
environmental conditions in a vehicle such as illumination levels, different operators, driver 
characteristics (e.g., skin color, glasses), driver behaviors, vehicle vibrations, and temperatures. 
Second, the technology must hold high construct validity and accuracy of the real-time driving 
environment. The device should accurately, continuously, and in real-time measure the intended 
state(s) by minimizing the disparities between the estimated state and the true state of the 
operator while simultaneously minimizing the prevalence of false alarms and misses. Third, the 
technology must meet a human’s interface needs. For example, the device should not distract 
from the driving task or impede the driver’s vision of the roadway or mobility and must also be 
easy for an operator to interact. Fourth, the device should not be cumbersome to calibrate or 
maintain, nor should it require high costs to maintain. Barr et al.(117) added to this list by 
including three more valuable design requirements. The monitoring system should consider the 
security of the driver in terms of protecting sensitive information that may be captured by the 
system. The device itself should preferably be automatically activated and deactivated when the 
vehicle is powered on and off. However, if manual activation and deactivation are necessary, it 
should not be cumbersome for the driver. Similarly, it should not allow intentional or 



unintentional misuse of the system. Finally, the authors stressed the importance of driver 
acceptance and stakeholder buy-in. They asserted that regardless of the safety benefits of the 
system, successful deployment is unlikely if the users do not deem the device acceptable.  

Combining works from Dinges and Mallis,(118) Whitlock,(119) Bekiaris et al.(120), and Barr et 
al.(121) conceptualized a methodology using five criteria to assess user acceptance of new and 
emerging technologies. The two most relevant to DSM are perceived value and advocacy. 
Perceived value is the extent to which drivers view the benefit of the technology as outweighing 
possible costs. It is important for drivers to understand the safety benefits of monitoring and the 
data confidentiality of the information being collected about their driving behavior. Advocacy is 
the desire to endorse their fleet’s purchase of the new technology. Advocacy is important 
because although perceived value may be high, the willingness of drivers to support the process 
of obtaining it is just as important. Peng et al.(122) investigated the perception and attitudes of 37 
CMV drivers towards DSM systems. Over half of the participants viewed the DSM as improving 
safety and regarded the system in a mostly positive light. Six of the participants were classified 
as overly trusting of the DSM system and were strong proponents of its implementation. Eight of 
the participants viewed the system negatively and were concerned with the privacy issue of being 
continuously monitored. Ghazizadeh et al.(123), Greenfield et al.(124), and Camden et al.(125) found 
similar results with issues of privacy. Therefore, it is recommended that fleets educate their 
drivers on privacy protection, their role in safety, and the functions of the system in detail before 
implementing this new technology.  

5.4.1.10 Literature Review Conclusions 
The purpose of this literature review was to determine thresholds of driver characteristics such as 
fatigue, drowsiness, distraction, negative emotions, or impairment that may impact a safety 
operator’s readiness to take over an ADS-equipped CMV. Additionally, the review considered 
the differences in thresholds of driver states necessary for a safety operator who is presumed to 
be a highly trained individual versus a typical CDL holder supporting operations onboard an 
ADS-equipped CMV.  

Considering the complexity of the driving environment, many technologies measuring 
physiological indicators are currently too invasive to monitor driver state in real-world, everyday 
driving environments. For example, some of the most accurate indicators of driver state such as 
EEG or ECG require skin contact or other invasive eyewear/headwear. The least invasive 
indicator is a wearable watch or ring to monitor HRV, yet the compliance rate of these devices 
has not been investigated with safety operators. Safety operators have been distinguished from 
the general CMV professional driving population due to their rigorous training on vigilance and 
ADS technology, so it is unclear whether wearable technology would have higher compliance 
rates with this population. Despite the difficulties with physiological measures, IR camera-based 
systems show great potential for their ability to monitor a wide range of driver states, including 
some physiological measures, in a robust and adaptive manner. These camera-based sensors rely 
on computer vision to classify objects, facial features, or body posture, and a machine learning 
algorithm determines whether the characteristics of the driver represent an impaired state. 
Therefore, the DSM systems with the most potential use deep learning algorithms to classify data 
captured by advanced external sensors in real time and in highly variable conditions.  



Overall, there are gaps in the literature for understanding DSM as it applies to safety operators; 
however, DSM systems show promise for integration with ADS-equipped CMVs. As developers 
of ADS-equipped CMVs continue to seek safety assurance for their vehicles with new features 
and operational design domains, the role and standards for safety operators will continue to 
evolve through iterative testing and deployment. Similarly, different ADS fleets have individual 
standards for their safety operators, which may not be reflected in the AVSC standards. For 
example, the AVSC(126) recommends certain driver behaviors such as keeping hands on the 
wheel or taking frequent breaks, yet individual fleets choose the exact rules for their drivers. 
Moving forward, investigating currently available DSM systems for their applicability to safety 
operators is necessary to understand how these defining metrics of driver state support the safe 
driving of safety operators in the future. Additionally, gaining an understanding of the exact 
responsibilities of a safety operator across various fleets through a task analysis or function 
allocation should be done to correctly design a DSM system for this population. 

5.4.2 Technology Scan 
The purpose of this technology scan was to identify commercially available DSM technologies 
that can be applied to and inform the safe operation of ADS-equipped CMVs. The scope of the 
scan is limited to technologies that monitor driver characteristics identified by the literature 
review (i.e., distraction, impairment, drowsiness, mental workload, and emotions) and 
technologies that could be used to assess the ability of a safety operator to take over control of an 
ADS-equipped CMV during a planned or unplanned ADS disengagement. For example, 
monitoring HR alone may not provide a full understanding of driver state; however, combining 
video monitoring, HR, and manual control checks may accurately illustrate the condition of the 
driver and their ability to take over driving tasks. This technology scan established what DSM 
technologies and systems are available and their functions, capabilities, limitations, and use cases 
when integrated and applied with ADS operations.  

5.4.2.1 Technology Scan Results 
An initial internet search was conducted using various publicly available search engines. The 
following keywords were used to find company websites mentioning DSM systems: driver 
monitoring system, driver monitoring, video-based monitoring, commercial vehicle driver 
monitoring, driver impairment monitoring, fleet camera systems, driver alcohol sensors, in-
vehicle alcohol sensor, and in-vehicle drug sensor. Each website that mentioned DSM systems 
or some form of monitoring system was included in a document along with a link to the site. The 
results from this initial scan are shown in Table 30.  

Table 2. Full list of providers and technologies from the initial results of the technology scan. 

Vendor DSM Technology 

Aptiv  Driver Monitoring System 

AT&T FleetComplete Vision 

Azuga SafetyCam  

BlackVue BlackVue AI-powered Driver Monitoring System 

BlueArrow Telematics SurfSight  

Brickhouse Security Driver-facing Camera 



Vendor DSM Technology 

CalAMP  Vision AI-driven dash video and analytics 

Cambridge Mobile Telematics  Driver Monitoring System 

Clearpath GPS Driver Facing Camera 

Coretex Driver Facing Camera 

Denso Driver Monitoring System 

E-Drive Technology E-Driver Facing Camera 

Faurecia Active Wellness 

FieldLogix Wireless Dash Cam 

Fleet Complete Driver Facing Camera 

FleetCam FleetCam 

FleetHoster FleetFlix AI + Pro Dash Cam 

FleetOptix Driver Facing Camera 

Forward Thinking Fleetcam 3.0 

Garmin Garmin Instinct Watch 

Geotab Third-party Dash Cams 

GPS Insight Driveri 

GPSTrackit VidFleet  

GreenRoads VideoSense 

Harman Ready Care  

HD Fleet GOS Tracking Cam (Same as FleetOptix) 

Insight Mobile Data Driver Facing Camera 

ISR Tech Driver Facing Camera 

JJKeller Driver Facing Camera 

Linxup Dashcam  

Lytx DriveCam 

Lytx SurfSight 

MixTelematics Mix Vision  

Motive AI Dash Cam 

Nauto AI Cam 

Netradyne Driveri 

NexTraQ Driver Facing Camera 

Orbcomm Driver Facing Camera 

Orion Fleet Intelligence Orion Vision: AI Dashcam 

Pedigree Technologies Driver Facing Camera 



Vendor DSM Technology 

Rand McNally Driver Facing Camera 

RoadHawk Driver Facing Camera 

Rosco Vision Systems DV6 “Dual Vision” 

Samsara AI Dash Cam 

Seeing Machines Guardian 

SkEYEwatch SkEYEvue AI-powered smart dash cam 

SmartCap LifeBand 

SmartEye SmartEye Driver Monitoring 

SmartWitness KP2: Modular Dual Camera Solution 

Solera SmartDrive 

Spireon FleetLocate  FL360 Camera  

SureCam SureCam  

Teletrac Navman Driver Facing Camera  

TitanGPS AI Fleet Smart Camera System or In-CAB  

Trac Star International SmartWitness  

TrackNet Truck Dash Cam (Same as FleetOptix) 

Trimble Cabin Intelligence Monitor (CIM) 

Verizon Connect Intelligent AI Dashcam 

Vision Track VT3000-AI  

Zenduit Zenducam AD Plus 

Zen-tinel Surveillance Cam  

Zonar System Zonar Coach  

Zonepro Zonepro ADAS And Driver’s Camera  

Ineligible technologies were those that could not be integrated or applied to a SAE L4 ADS. For 
example, technologies were removed from the list if they used only vehicle-based metrics (e.g., 
lane departures, speed) to determine driver state. In an SAE L4 AV, the vehicle is assumed to 
have control over longitudinal and lateral functions; therefore, these functions would not be 
influenced by driver state. Additionally, technology was removed if it did not assess the state of a 
driver continuously and in real time. Some technologies merely record events for later review, 
which would not proactively determine a driver’s state before an incident. Lastly, technologies 
were removed if they used invasive sensors to measure driver state. Excessively invasive designs 
included headbands/caps with electrodes, sensors that covered the fingers, wires that extended 
from the hand, wrist, or body, and glasses or headwear. These technologies were excluded 
because they rely on the drivers to properly calibrate and adjust the devices, which may 
negatively impact the compliance rate. Furthermore, these technologies may cause discomfort 
for the driver or fail to address the individual differences in drivers’ characteristics. The 
remaining companies were categorized based on the items in Table 31. 



Table 3. Description of each of the metrics collected from the DSM technologies. 

Characteristic Definition Examples  

1. Driver State 
Metrics 

The data collected about the 
physical condition of the 
driver that can be used to 
determine state 

HR, head position, eye glances, 
etc.  

2. Driver State 
Evaluation 

The states of the driver that 
can be classified by the 
system 

Visual distraction, manual 
distraction, drowsiness, 
intoxication, etc.  

3. Sensors The method for collecting 
driver state metrics data 

Cameras, IR lights, HR monitor, 
etc. 

4. Driver 
Involvement 

Yes/No – Does the 
technology require driver 
involvement? 

Frequent calibration, turning the 
system on/off each drive, wearing 
a device, etc. 

5. Stand-alone or 
Combined  

The capability of the 
identified technology to 
assess DSM independently 
and effectively or the need 
to be used in conjunction 
with another technology 

HR monitor – must be combined 
Video-based monitoring – stand-
alone 

Each remaining technology was assessed based on these characteristics. Table 32 shows the 
results from the final technology scan. Each column in Table 32 represents a different metric 
collected from each of the DSM technologies identified in each row. The results from this table 
were identified using public websites belonging to each of the technology developers listed in the 
rows of the table. The wording used in each category is standardized due to the variability in 
terminology from each of the DSM companies. For example, some DSM companies used the 
term “fatigued” to describe the stages leading to falling asleep; however, the term “drowsy” is 
used to describe that state here. In the Driver Involvement column, the term “unknown” is used 
when a company’s website failed to mention the maintenance or driver action required. The term 
“unknown – assumed minimal requirements” is used when the company’s website mentioned 
“easy maintenance” or otherwise indirectly mentioned simple driver involvement but did not 
detail the exact requirements. Otherwise, the driver involvement is described. Overall, the term 
“unknown” is used when a company’s website did not provide enough information to make a 
conclusion about the capability of the DSM technology in the respective category.  



Table 4. Final technology scan results. 

Technology Driver State Metrics Driver State Evaluation Sensors Driver 
Involvement 

Stand-
Alone/Combined 

BlackVue AI-
powered Driver 
Monitoring System 

Head Position Visual Distraction 
Hand-Held Cell Phone 
Distraction 
Drowsy 

Camera 
AI 
Infrared 
LEDs 

Unknown – 
Assumed Minimal 
Requirements 

Combined 

DriveCam Head Position Visual Distraction 
Manual Distraction 

Camera 
AI 
Infrared  

No Combined 

Driveri Facial Recognition Distraction 
Drowsy 

Camera 
AI 

Unknown – 
Assumed Minimal 
Requirements 

Combined 

Field Logix 
Wireless Driver 
Cam 

Unknown Visual Distraction 
Manual Distraction 

Camera 
AI 
Infrared 

No Combined 

FleetCam Eye Movement 
Head Position 

Visual Distraction 
Manual Distraction 
Drowsy 

Camera 
AI 

Unknown – 
Assumed Minimal 
Requirements 

Combined 

FleetCam 3.0 Eye Movement 
Head Position 

Visual Distraction 
Manual Distraction 
Drowsy 

Camera 
AI 
Infrared 

Unknown – 
Assumed Minimal 
Requirements 

Combined 

FleetComplete 
Vision 

Head Position Visual Distraction Camera 
AI 

Unknown Combined 

FleetFlix AI + Pro 
Dash Cam 

Unknown Visual Distraction  
Hand-Held Cell Phone 
Distraction 
Drowsy 
Cell Phone Use 

Camera 
AI 
Infrared 

Unknown – 
Assumed Minimal 
Requirements 

Combined 



Technology Driver State Metrics Driver State Evaluation Sensors Driver 
Involvement 

Stand-
Alone/Combined 

FleetOptix Driver 
Facing Camera 

Head Position 
Facial Landmarks 
Eye Movement 

Visual Distraction 
Manual Distraction 
Drowsy 

Camera 
AI 
Infrared 

Unknown – 
Assumed Minimal 
Requirements 

Combined 

Garmin Instinct 
Trucker Watch 

HR 
Respiration Rate 
Pulse Oxygen 
Energy Monitor 
Stress Monitor 
Sleep Monitor 

Stress Wearable 
Watch 

Yes Combined 

JJ Keller Dash 
Cam PRO 
advanced 

Unknown Visual Distraction 
Drowsy 

Camera 
AI 

No Combined 

Motive AI Dual-
Facing Dash Cam 

Head Position Visual Distraction Camera 
AI 
Infrared 

No Combined 

Orion Vision AI 
Dashcam 

Eye Movement 
Head Position 
Facial Recognition 

Visual Distraction 
Hand-Held Cell Phone 
Distraction 
 

Camera 
AI 
Infrared 

Unknown – 
Assumed Minimal 
Requirements 

Combined 

Rosco DV6 Eye Movement 
Head Position 
Facial Landmarks 

Visual Distraction 
Drowsy 
Hand-Held Cell Phone 
Distraction 

Camera 
AI 
Infrared 

No 
Manual Updates 

Combined 

Samsara AI 
Dashcam 

Head Position Visual Distraction Camera 
AI 
Infrared 

No Combined 

Guardian Eye Movement 
Head Position 

Visual Distraction 
Drowsy 

Camera 
AI 

No Combined 



Technology Driver State Metrics Driver State Evaluation Sensors Driver 
Involvement 

Stand-
Alone/Combined 

SkEYEvue AI 
Powered Smart 
Dash Cam 

Unknown Visual Distraction 
Drowsy 
Manual Distraction 

Camera 
AI 
Infrared 

Unknown Combined 

Smart Drive Eye Movement 
Head Position 

Visual Distraction 
Drowsy 

Camera 
AI 
Infrared 

Unknown Combined 

Smart Witness 
KP2: Modular 
Dual Camera 
Solution 

Head Position Visual Distraction 
Drowsy 

Camera 
AI 
Infrared 

Unknown Combined 

SmartEye Driver 
Monitoring 

Eye Movement 
Head Position 
Body Posture 

Visual Distraction 
Manual Distraction 
Drowsiness 

Camera 
AI 
Infrared 

Yes Combined 

SurfSight Head Position 
Facial Landmarks 

Visual Distraction 
Drowsy 

Camera 
AI 
Infrared 

No Combined 

Trimble Cabin 
Intelligence 
Monitor (CIM) 

Unknown Visual Distraction 
Drowsy 

Camera 
AI 
Infrared 

Unknown Combined 

Verizon Intelligent 
AI Dashcam 

Unknown Visual Distraction Camera 
AI 
Infrared 

Unknown Combined 

VideoSense Unknown Visual Distraction 
Manual Distraction 
Drowsy 

Camera 
AI 

No Combined 

VidFleet Eye Movement 
Head Position 

Visual Distraction 
Manual Distraction 

Camera 
AI 
Infrared 

Unknown Combined 



Technology Driver State Metrics Driver State Evaluation Sensors Driver 
Involvement 

Stand-
Alone/Combined 

Vision Track 
VT3000-AI 

Unknown Visual Distraction 
Manual Distraction 
Drowsy 

Camera 
AI 
Infrared 

Unknown Combined 

Zenduit Zenducam 
AD Plus 

Head Position 
Facial Landmarks 

Visual Distraction 
Manual Distraction 
Drowsy 
 

Camera 
AI 
Infrared 

Unknown Combined 



5.4.2.2 Selection Criteria 
To determine the most appropriate DSM for safety operators, the various technologies were 
assessed based on their ability to meet the criteria defining an ideal DSM system. These criteria 
were adapted from the evaluation standards for DSM systems defined by Bowman et al.(127) and 
the AVSC’s(128) description of safety operators. The DSM technology should:  

1. Assess a safety operator’s level of drowsiness, level of distraction (cognitive, visual, 
manual, and auditory), emotional state, level of intoxication, and mental workload. 

2. Be robust to the dynamic driving environment consisting of temperature changes, 
vibration, illumination changes, and varying safety operator characteristics (e.g., skin 
color, glasses, eye shape).  

3. Assess the state of the safety operator continuously, in real time, and with high accuracy.  
4. Not be cumbersome to calibrate or maintain, nor should it require high costs to maintain.  

5.4.2.3 Technology Scan Conclusions 
Currently, no commercially available DSM system meets all criteria for an ideal DSM system for 
a safety operator. First, none of the technologies capture all driver states. Most systems assess 
whether a driver is distracted visually or manually but fail to consider cognitive and auditory 
distraction. Most systems assess driver drowsiness using eye behavior or head position but do 
not attempt to measure physiological signs of drowsiness. No DSM systems currently offer 
alcohol/drug detection or mental workload assessments. HRV monitors and alcohol/drug 
monitors are available separately, but few companies consider their products in the driving 
context; therefore, many of the devices are cumbersome or require the user to engage with the 
device, which they could not do while driving.  

To measure all driver states with the available DSM systems, a combination of technologies is 
needed. For example, a DSM system measuring distraction, drowsiness, and emotions can be 
combined with an external alcohol monitor and wearable watch that measures workload to 
capture all aspects of the driver’s state. Second, most companies offering DSM systems mention 
robustness to temperature variation and vibration and include an infrared light for night driving, 
yet they fail to discuss variability in operator characteristics. Third, all the DSM systems in this 
review monitor the safety operator continuously and in real time; however, it is difficult to 
understand the accuracy of each of the technologies without a standardized comparison criterion. 
This aspect of the technologies would need to be tested further in an experimental design or more 
detailed analysis. Lastly, it is assumed that most camera-based DSM systems activate when the 
vehicle starts and deactivate when the vehicle is off, which would require no involvement from 
the driver. However, the websites rarely mention maintenance requirements or frequency of 
updating the AI algorithms.  

Based on the evaluation criteria defined above, the Smart Eye Driver Monitoring System was 
used for testing in the next phase of research(129) in parallel with the Empatica smart watch.(130) 
This DSM system currently captures the states of drowsiness and both visual and manual 
distraction. Additionally, Smart Eye claims their DSM system stands up to vibration and difficult 
lighting conditions found in heavy vehicles. The Smart Eye system also uses gaze position, eye 



movement, and pupil size to determine a driver’s state, which is a more robust measure of 
distraction and drowsiness than head position alone, which several companies use. Lastly, the 
Smart Eye website mentions easy installation, allowing drivers to install and interact with the 
system using a tablet.  

The Empatica watch was selected to fit the needs of the study as well. When considering 
physiological measures, the selected device needed to be a non-intrusive item, such as a wearable 
smart watch device. Additionally, most smart watches currently available are designed for 
messaging and internet access; however, for data security during research, the watch selected 
needed to have a dedicated platform for data analytics and ensured security. Lastly, the Empatica 
watch has great battery life, measures several crucial data points such as HRV and EDA, and it is 
FDA approved. Although the Smart Eye and Empatica devices were used in testing, this 
selection does not imply endorsement of any Smart Eye or Empatica products mentioned in this 
report. Other systems may be desired for reasons not prioritized in this study. 

The Smart Eye DSM system and Empatica device meet several criteria relevant to human 
drivers; however, it is unclear whether the exact needs of safety operator monitoring are being 
met. This is due to a lack of information on the tasks a safety operator performs during their 
ADS duties. This gap in knowledge illustrates the need for a task analysis of safety operator 
responsibilities across various ADS fleets. This task analysis would establish the exact states and 
activities a DSM system would need to monitor relevant to a safety operator. 

5.4.3 Driver State Monitoring Industry Interviews 
Currently, the AVSC recommends including a DSM system in ADS-equipped test vehicles to 
ensure a safety operator is fit to assume control during an emergency takeover request.(131) This 
requires DSM technology to accurately identify inappropriate driving behaviors and correct them 
in real time. As stated earlier, a literature review and technology scan were conducted to compile 
available information about state-of-the-art DSM systems. From these results, it is evident that 
the technology required to integrate DSM systems and ADS-equipped vehicles and to accurately 
monitor a safety operator is still developing. Additionally, it is unclear exactly what 
responsibilities a safety operator has at the wheel given the additional monitoring requirements 
of ADS technology with the rarity of failure events. In other words, it is unclear if the features of 
current DSM technologies are sufficient to monitor a safety operator given that DSM systems are 
designed for regular CMV drivers. 
  
During this effort the research team sought to understand the role of safety operators and the 
present gaps in the technology used to monitor them. The objective of this phase was to connect 
research with industry practices by interviewing representatives from two critical sectors: ADS 
developers and DSM technology providers. The interviews gathered information about the 
integration of DSM into ADS-equipped CMVs through questions about barriers to integration, 
roles of a safety operator, and current use of DSM technology. The following section presents 
the processes and results of the interviews with DSM technology providers and ADS developers 
about DSM systems being integrated in ADS-equipped CMVs.   



5.4.3.1 Interview Methodology 
The team planned to interview up to nine representatives from each group using existing 
relationships with industry contacts. Many companies chose not to participate due to proprietary 
concerns. A total of seven representatives from DSM providers and three representatives from 
ADS developers agreed to participate in the interview process. All interviews lasted 30 minutes 
and were conducted via an online video platform.  

The DSM providers were asked seven questions about their efforts to improve and integrate 
DSM technology. The ADS developers were asked 13 questions about safety operators and the 
possibility of DSM integration with their systems. The results from those questions are grouped 
by theme and presented below. 

5.4.3.2 DSM Technology Providers 
Terminology: To understand terminology used by individual companies, participants were 
asked if their company referred to their system as “DSM,” and if they did not, they were asked 
what they called the video technology used to assess driver state while driving. Only one of the 
seven participants said that their company specifically called their system DSM (14%). Two of 
the participants said that they called it a driver monitoring system, and another two said that they 
had different names for the system but would agree the capabilities were similar. All companies 
agreed that calling the technology a DSM system was appropriate. The exact names of the 
alternative technologies have been left out to protect the anonymity of the companies, but they 
all referenced specific features of the technology as opposed to the general term DSM. 

Integrating DSM with ADS-equipped CMVs: Regarding DSM, the participants were asked 
whether their companies were exploring ways to integrate their systems with ADS-equipped 
vehicles.  The responses to this question are shown in Figure 46.  As shown in Figure 46, the 
majority (57%) of the participants indicated that their companies are not exploring ways to 
integrate with ADS-equipped vehicles.  The main reason that these participants said they were 
not interested in integrating their systems with ADS-equipped vehicles was that it was not their 
business focus.  They were primarily focused on providing aftermarket solutions for vehicles that 
are currently on the road. 

As a follow-up question, the participants were then asked why they have or have not considered 
ways to integrate their systems into AVs. Many participants again cited the need to cater their 
systems to their current customers who drive non ADS-equipped CMVs and did not find it 
advantageous to explore AVs. Another participant claimed they were not exploring integration 
because their company focuses heavily on driver behavior coaching, which may become obsolete 
in the field of ADS-equipped CMVs, as the industry is moving towards driverless trucks. Other 
participants cited the desire to improve the depth of the current technology as opposed to the 
breadth of their operations.  

For participants who indicated their companies were considering integration, the reasons for 
doing so varied. One reason was the upcoming European requirement of DSM in all new 
vehicles.(132) The other two reasons were more focused on the goal of DSM technology to 
improve safety: DSM systems could optimize the relationship between human drivers and ADSs 
by predicting when the human may need a break from the driving task to help prevent collisions, 



and DSM systems could help prevent human drivers from becoming complacent with ADS 
technology in their vehicles. 

 
Figure 2. Chart. Percentage of responses to the question, “Is your company currently exploring ways to 

integrate driver state monitoring with autonomous vehicles?” 

Barriers to Integration: Next, participants were asked about current barriers their company is 
facing in the efforts to improve DSM technology.  There were two major trends in the answers to 
this question.  The largest barrier that the participants mentioned was access to the right data to 
make improvements, which was indicated as a barrier by four of the participants. One participant 
mentioned the major trade-offs of making an aftermarket solution that is affordable while being 
small enough to fit on a windshield and processing enough data to make it accurate. Billions of 
data points are needed to understand the edge cases in human behavior that the providers need to 
detect, so large processors are needed to run through this data. Additionally, one provider 
mentioned there are issues with sensors on the vehicles being insufficient for collecting data and 
that some of the available data is proprietary. The participant emphasized that not only are the 
sensors insufficient, but many do not communicate properly with each other, especially with an 
aftermarket solution. These factors make using vehicle data for improvement difficult.  Another 
barrier that participants noted was privacy laws, which were brought up by three of the 
participants. There is an issue with drivers not wanting the technology in their vehicles, so the 
providers need to try to gather data while protecting driver privacy. 

Methods of Improvement: Participants were also asked what methods their company uses to 
improve DSM technology. The most common response to this question (57%) was using 
customer feedback to make improvements to their technology. The providers want to use 
information from customers to make sure they are targeting the most relevant improvements. 
Several companies utilize human review to check the decisions made by the software. The 
reviewers use customer feedback to flag the most relevant issues from reviews. Along with this, 
another method of improvement mentioned by one of the participants included scanning data for 
near misses and using this to look for early warning indications and patterns of behavior to 



improve precision for detecting certain behaviors. For example, if many drivers nod their head 
before falling asleep, instead of triggering an alert when the driver is fully asleep, alerts can 
begin when the driver first shows signs of drowsiness. A final method of improvement identified 
by one of the participants was using data from other DSM system providers, released research, 
and white papers to validate their findings and make sure they are moving in the right direction. 

Methods for Testing Effectiveness: In addition to methods of improvement, the participants 
were asked what methods their companies are using to test DSM technology effectiveness.  Most 
of the participants (86%) said that customer feedback was a method their company was using to 
test effectiveness. For example, if they notice a high level of negative feedback from their 
customers, this may indicate a need to adjust the algorithm or to do further testing. The second 
most common method among the participants (57%) was using large datasets to test their 
system’s effectiveness. The new datasets help train their algorithms on edge cases, which helps 
improve effectiveness and accuracy. Then, along with these methods, participants also 
mentioned using live testing with drivers and simulations such as installing the systems in 
employee’s vehicles. 

Other Monitoring Factors: The last question participants were asked was whether their 
company had considered monitoring for other factors like emotions, alcohol use, or drug use.  
For alcohol and drug monitoring, 57% of the participants said that their companies are 
considering this type of monitoring.  However, the other participants said that their companies 
are more focused on monitoring behaviors instead. Across the board, emotion monitoring was 
not an interesting factor to the companies. There was concern among the participants that it 
would be difficult to detect emotions, and that there would not be much that the system could do 
to try to change an operator’s emotions. Additionally, emotional aspects could likely be 
identified through driving behavior, so there would not be much need for the DSM to look for 
emotional factors. 

5.4.3.3 ADS Developers 
Terminology: To ensure they understood the terminology being used in the interview, the first 
question ADS developers were asked was whether their company agreed with the name “safety 
operator” as someone who monitors an AV for possible failure. All three of the developers that 
were interviewed agreed with that naming convention. 

Once the terminology was established, the developers were asked if they used safety operators in 
their fleets, and if so, they were asked how many safety operators were employed at their fleet.  
All three developers said they did use safety operators. All the companies shared the number of 
safety operators in their fleet; however, they did not feel comfortable with us publishing the 
number of safety operators, as this may reduce their anonymity. All companies had over five 
safety operators. 

Team Driving: Next, the participants were asked if their safety operators operate in teams. Two 
of the three developers responded that their safety operators do not drive in teams, but they have 
a remote operator or dispatcher to interact with the safety operator. The last developer stated that 
their safety operators operate alone most of the time, but occasionally have a co-pilot or ride-
along depending on the task.  



Safety operator Training: The following question pertained to the type of training the safety 
operators received. Developers were asked where their safety operators were trained and whether 
they refer to the AVSC guidelines in training. All three of the developers indicated that they do 
their safety operator training in-house. One participant specifically noted that they do both an in-
classroom training and road testing, where safety operators demonstrate their ability to do 
maneuvers. Only two of the developers said that they refer to the AVSC guidelines specifically. 
These two companies stated that they use these guidelines to see where the safety emphasis is 
identified. 

Safety Operator Responsibilities: The next four questions that the developers were asked all 
related to the specific responsibilities of the safety operators and what actions they are prohibited 
from doing. The responses to these questions for all three developers are displayed in Table 33. 

Table 5. Responses for all ADS developers about safety operator responsibilities and prohibited actions. 

Responsibility or Prohibited Action 
Yes 

(All Companies) 
No 

(All Companies) 

Monitor roadway and vehicle behavior ✔  

Disengage if necessary ✔  

Keep hands on wheel (or hover) ✔  

Screen/Phone use prohibited ✔  

Drinking prohibited  ✔ 

Eating prohibited ✔  

Talking prohibited  ✔ 

 
In general, safety operators are expected to always remain alert to the roadway and vehicle 
behavior with their hands on or near the wheel so they would be capable of taking control of the 
vehicle in a failure case. One company required that the safety operator always keep their hands 
on the wheel, while the other two companies required their safety operators to hover their hands 
over the wheel and feet over the pedals. Respondents emphasized that safety operators are 
expected to perform all the roles of an ordinary driver while behind the wheel.  

Many of the checks the safety operators perform on the vehicle are communicated via laptop to 
the passenger or via in-cab alerts to the safety operator. For example, one company stated they 
use a combination of simple visual, verbal, and auditory alerts to communicate the state of the 
vehicle to reduce distraction for the safety operator. 

As the table above shows, the main actions that are prohibited for safety operators are eating and 
using a phone or some other screen. If an operator must drink water, they are expected to 
disengage from ADS mode. Secondary tasks performed by the safety operator should be kept to 
a minimum. One company stated that they have zero tolerance for electronics and if a safety 
operator uses an electronic device while driving, they are immediately terminated. The AVSC 
guidelines discourage conversation between safety operator and co-pilot unless it is about work-
related matters; however, none of the companies claimed to adhere strictly to this suggestion, as 



they feel light conversation helps reduce the safety operator’s cognitive load. Two companies 
mentioned that their safety operators often communicate with dispatchers via verbal interaction 
as well.  

DSM Use and Integration: The last three questions that developers were asked involved 
whether DSM technologies are currently in use in test vehicles and what the possibilities of DSM 
integration would be in the future.  All three of the developers said that they do use some type of 
third-party DSM in their test vehicles. Two companies discussed using multiple different DSM 
systems and testing multiple types of DSM technology. However, they all noted that there are 
significant issues with false positives for the behaviors they claim to assess. One company 
provided further insight by stating they do not think DSM technology is feature deficient, as it 
does monitor for the correct behaviors, but that it is rather capability deficient, as it does not 
accurately detect behaviors. As a result of these issues with available DSM technologies, only 
one ADS developer said that their company is interested in integrating a DSM system with ADS-
equipped vehicles. In addition to the efficacy issues of DSM technologies, some of the other 
barriers to integration that developers identified included the following: apprehension of safety 
operators to have inward-facing cameras, limits to installation locations given other cameras in 
the vehicle, and lack of DSM system predictive capabilities. Two of the companies claimed they 
are looking into developing their own DSM system, as the technology between ADSs and DSMs 
are similar.  

5.4.3.4 Industry Interview Conclusions 
These conversations provided valuable insights into DSM and ADS technologies. ADS 
developers recognize the utility of DSM systems for monitoring their safety operators, 
acknowledging their importance in ensuring safe operation. However, the path to seamless 
operation will require further refinement of DSM technologies before ADS developers can 
confidently integrate these systems into their vehicles. False positives and efficacy concerns are 
among the challenges that need to be addressed. DSM providers must continue to enhance the 
technology’s accuracy and reliability. Other barriers to integration include data access limitations 
and driver apprehension about inward-facing cameras. Without further technological innovation, 
DSM developers may struggle to find the tedious balance between affordability, size of the 
device, and computing power sufficient to improve accuracy. The barriers to DSM use are not 
insurmountable but require concentrated efforts to overcome.  

The evolving landscape of ADS-equipped CMVs requires ongoing dedication to ensure the safe 
and effective deployment of ADS technology on U.S. roadways. As ADS-equipped CMVs 
become an integral part of the transportation environment and demands on drivers become more 
complicated, addressing the challenges associated with DSM integration becomes critical. These 
interviews highlight areas for future research in enhancing the accuracy of DSM technologies, 
exploring innovative approaches to reducing false positives for safety operators, and devising 
methods to gain driver buy-in for the use of driver-facing cameras while considering privacy law 
concerns. Overall, there is a clear need for collaboration between stakeholders in this field to 
improve DSM technology so that it can be integrated into ADS-equipped CMVs.  



5.4.4 Exploratory Technology Evaluation 
As made evident from the previous two sections of this report, ADS developers desire to have 
DSM systems in their vehicles to monitor their safety operators for inattention, fatigue, and other 
safety measures like seat belt use. However, each of the developers commented on the 
inaccuracies and false alarms present in the aftermarket technologies currently available for 
purchase. When considering integration, the ideal DSM technology would communicate with the 
ADS and remote assistants about driver state and take corrective action based on the operator’s 
degraded takeover ability. Developers that are interested in future integration of DSM systems 
with their ADS-equipped CMVs must consider the efficacy of these systems. Successful 
integration of DSM technologies in an ADS-equipped CMV is only possible if those 
technologies overcome the barriers of inaccuracy. Other barriers to integration include 
establishing valuable training datasets, sensor limitations, and affordability of aftermarket 
solutions. The purpose of this data collection was to explore the capabilities of two DSM systems 
by documenting possible shortcomings and by exploring how effectively a state-of-the-art DSM 
system meets the needs of safety operator monitoring. Additionally, this report serves to 
recommend future research opportunities that can build upon these findings.  

This evaluation used two testing environments. The first part of testing occurred on a controlled 
test-track where the DSM system was installed in a CMV and the driver performed various 
behaviors relevant to a safety operator. Recent developments in DSM systems point towards a 
research need in testing DSM systems in naturalistic driving settings without manipulating 
operator state triggering.(133) Therefore, the second part involved collecting naturalistic data from 
a DSM system installed in an ADS-equipped CMV with a safety operator.  

5.4.4.1 Methods 
This testing included two monitoring technologies. The first technology was the Smart Eye 
Aftermarket Installation System (AIS) (Figure 47).  

 

 
Figure 3. Photo. Smart Eye AIS hardware. 

 
This technology was selected based on the criteria listed earlier. This technology represents a 
video-based monitoring system that tracks the driver’s eye and head positions to determine 
driver states such as drowsiness and distraction. Material in the literature review noted that future 
research with DSM systems should consider integrating different state indicators such as video-
based and physiological indicators.(134) Two separate DSM systems were used in parallel during 
testing to begin addressing this research need. In addition to the video-based system, a smart 



wearable device called Empatica (Figure 48) was included in the data collection. This technology 
represents a wearable physiological data sensor. 

 
Figure 4. Photo. Empatica smart wearable device. 

The two DSM systems were evaluated using two driving contexts: (1) a naturalistic automated 
driving in a port and (2) a controlled test track experiment using emulated driver states. In the 
first evaluation, the systems were installed in a CMV owned by a participating fleet with the 
ADS provided by Pronto integrated into the CMV. The driver of the truck was a safety operator. 
The ODD for the Pronto truck was a breadcrumb trail around a shipyard in Alaska. The truck 
was practicing moving freight across the yard to prepare for active barge operations. The safety 
operator was tasked with monitoring the system during this 2-hour practice in the ODD, which is 
part of their regular job duties. The system was installed in the fleet’s ADS-equipped CMV 
according to the Smart Eye AIS installation procedures documented both on their website and in 
the mobile app by a VTTI installer. The Smart Eye system was set to default system settings for 
all behaviors and the speed limit was set to “simulated” so that driving tasks could be performed 
at any speed. Images of the Smart Eye system installed in the Pronto truck and the driver are not 
included for privacy reasons. Video recording of the vehicle operation was collected, but no 
footage of the driver was taken during the practice due to privacy concerns. The driver was 
interviewed after the drive to inquire about tasks completed during monitoring and general 
fatigue level. The driver wore the Empatica watch on the left wrist (non-dominant). Both systems 
were checked to ensure they were collecting data properly before testing was initiated.  

In the second evaluation, the systems were installed in a conventional semi-truck provided by 
VTTI. The driver of the truck was a Class A CDL holder employed by VTTI. Testing took place 
on the Virginia Smart Roads for 2 hours during daylight. The same Smart Eye system used in 
Alaska was installed in the VTTI truck by the same VTTI installer. The installation position is 
included in Figure 49.   



 

Figure 5. Photo. Installation position for Smart Eye. 

The driver also wore the Empatica watch on the left wrist (non-dominant), as shown in Figure 
50. 
  

 
Figure 6. Photo. Empatica watch on driver. 

Both systems were checked to ensure they were collecting data properly before the driver started 
piloting the CMV. The two systems were evaluated by having the driver emulate three common 
driver states: drowsiness, distraction, and high mental workload. Additionally, since ADS  
developers often mentioned false alarms for their DSM systems during the interviews, quasi-
distraction behaviors were also included to test the system’s discernment of distraction. For 
example, testing included whether or not looking in the side mirrors was categorized as 
distraction. Each task was standardized to ensure the driver performed similarly across each trial. 
Additionally, timers and audio cues were used to ensure the timing of each task matched the 
protocol. The protocol for each task is listed below. 



 
To emulate a state of distraction, the driver texted multiple messages on a smartphone and held a 
phone to their ear as if taking a phone call. For the phone call task, the following protocol was 
used to test the device’s ability to identify the behavior: 

1. The driver looked down at the cup holder, where the phone was sitting, once. 
1. The driver reached for the smartphone in the cup holder with their right hand. 
2. The driver looked at the phone as if to unlock it.  
3. The driver held the phone to their ear for 30 seconds while looking at the road.  

 
Figure 51 illustrates how the driver held the phone during testing. 
 

 

Figure 7. Photo. Phone call. 

For the texting task, the following protocol was used to test the device’s ability to identify the 
behavior: 

1. The driver looked down at the cup holder, where the phone was sitting, once. 
2. The driver reached for the smartphone in the cup holder with their right hand. 
3. The driver held the phone in their right hand at an elbow bend of 45 degrees within 

view of the camera.  
4. The driver looked up and down at the phone for 2 seconds with eyes off road and 1 

second with eyes on road twice, for a total of 6 seconds, based on Olson et al., which 
found that drivers dialing their phone tended to look down for an average of 3.8 
seconds over a 6-second period.(135) 

 
Figure 52 illustrates the driver following the procedure for sending an outgoing text message. 
 



 
Figure 8. Photo. Texting behavior 

 
To emulate a state of drowsiness, the driver performed several behaviors that characterize 
symptoms of a sleepy driver, as well as pretending to fall asleep. The driver blinked slowly, 
drooped his head, closed his eyes, and yawned. For the yawning task, the driver simply yawned 
three times per trial by opening his mouth wide. The driver attempted to stifle any yawns that 
occurred outside of the trial. Figure 53 illustrates how the driver followed the yawning 
procedure. 
 

 
Figure 9. Photo. Yawning 

 
For the slow blinking task, the following procedure was used to test the device’s ability to 
identify the behavior: 

5. The driver slowly closed his eyes over the course of 3 seconds until they were shut. 
6. The driver held his eyes shut for 1 second, then opened them.  
7. The driver held his eyes open for 3 seconds. 
8. The driver blinked slowly five times. 

 
Figure 54 illustrates the driver following the procedure for the slow blinking. 
 



 
Figure 10. Photo. Blinking slowly. 

 
For the closing eyes task, the driver emulated a microsleep with eyes closed and head up. In 
terms of procedure, the driver simply closed his eyes for 5 seconds per trial. Figure 55 illustrates 
the driver following the procedure for closing eyes. 
 

 
Figure 11. Photo. Closing eyes. 

 
For the drooping head task, the driver emulated a microsleep with eyes closed and head down. 
The following procedure was used to test the device’s ability to identify the behavior: 

1. The driver slowly drooped his head down towards his chest over the course of 5 
seconds. 

2. The driver lifted his head quickly and opened his eyes.  
3. The driver repeated this three times per trial.  

 
Figure 56 illustrates the driver following the procedure for drooping head. 



 
Figure 12. Photo. Drooping head 

 
To induce a state of mental workload, the driver was asked to count backwards from 1,000 by 3, 
7, and 13, once per trial. The driver maintained his gaze on the road during this task.  
 
To understand how normal driving behaviors could be confused for improper driver state, the 
driver was instructed to check his mirrors, look at the dashboard, and focus on pedestrians 
outside of the vehicle. For the mirrors and dashboard tasks, the driver looked at the object for a 
total of 3 seconds. For the pedestrian task, the driver was asked to follow the pedestrians with his 
gaze until they were out of comfortable view. The setups for the pedestrians are included in 
Figure 57 and Figure 58.  
 

 
Figure 13. Photo. Motorcycle and bicyclist road users positioned at intersection. 



 

Figure 14. Photo. Adult, male pedestrian positioned at intersection. 

The analysis of the results differed for each testing environment. For the observational data 
collected in the shipyard, the frequency of alerts was taken for each of the collected behaviors to 
understand how often the driver was notified of improper behavior. Each count corresponds to an 
in-cab alert delivered to the driver over the course of the 90-minute drive. The number of false 
alarms was not collected during this drive, as in-cab video was not recorded due to privacy 
concerns. Summary statistics received from the Empatica watch, such as HR, HRV, and EDA, 
were gathered for each of the metrics collected.   

For the Smart Roads testing, the number of successful alerts was determined for each category 
(i.e., texting, phone call, etc.). In the event there were multiple successful alerts for the same 
behavior, only the first behavior was included in the count. Although the number of false alarms 
could be totaled, this metric is considered outside the scope of this exploratory effort. Instead, it 
was noted whether there was at least one false alarm in each category and whether the system 
incorrectly identified at least one behavior. This decision was made because this project is not a 
benchmarking effort to understand the exact capabilities of two particular driver monitoring 
systems, but rather an attempt to understand possible shortcomings of all DSM systems when 
integrated with an ADS-equipped CMV.   

5.4.4.2 Results 
The following section presents the results obtained from the exploratory data collected in this 
study, which aimed to investigate the general success of a DSM system to monitor a safety 
operator during both naturalistic driving and closed test track driving.  

Smart Roads Testing 
For Smart Roads testing, the driver was instructed to emulate 11 driving behaviors, or tasks. The 
number of alerts during each trial was documented for each of the 11 tasks. The results are 
included in Table 34.  

 

 



Table 6. Emulated driving behaviors and tasks. 

It is important to note that the number of trials for all tasks is three, except for the pedestrian 
tasks, which had nine trials. The pedestrian task had nine trials because three configurations of 
pedestrians were used with three trials in each configuration (Motorcycle & Bicycle, Adult Male 
Pedestrian, and Child Male Pedestrian). The number of alerts represents the number of alerts that 
went off during testing for that task. This did not capture whether the alert was incorrectly 
assigned to the task, nor if there were multiple alerts for the same behavior, as only the first alert 
was counted. During testing, at least one false alarm was produced, and at least one false 
categorization occurred.  

From the Empatica watch, beats per minute (BPM) over the trip time was graphed to understand 
how the driver’s HR changed during the trip (Figure 59).   

State Task Number of alerts Number of Trials 
Distraction Phone Call 3 3 

Texting 3 3 
Drowsiness Yawning 1 3 

Blinking Slowly 3 3 
Drooping Head 3 3 

Close Eyes 3 3 
Mental Workload Counting Backwards 0 3 

Other Looking at Instrument 
Panel 

3 3 

Looking at Pedestrian 
Crossing 

2 9 

Looking at Left Mirror 3 3 
Looking at Right Mirror 3 3 



 

Figure 15. Changes in HR (in BPM) over time for the Smart Roads driver. 
 
The points of interest in the HR graph are the four peaks. The times of these peaks were 
compared to footage of the driver to understand possible causes. From 13:14 to 13:17, the driver 
was outside the vehicle helping with the setup for the pedestrian models. The driver was 
standing, moving, and lifting heavy mannequins during this period, which was likely responsible 
for the first peak. During the second peak around 13:30, the driver was again outside the vehicle 
aiding with breakdown for the pedestrian setup. From 14:06 to 14:10, the driver and researcher 
took a stretch break outside of the vehicle. The mental math trials occurred from 14:20 to 14:29. 
There were no obvious spikes in the HR during this time that would indicate the driver was 
experiencing heightened mental workload. The final, fourth, peak is interesting, although it is 
outside of the testing window. From 14:35 to 14:40, the driver was moving the truck from the 
closed test track to a facility further down the road. He encountered live traffic during this time, 
which seems to account for the spike in HR. Although this is outside the scope of this project, it 
is an interesting data point.  

The EDA amplitude collected from the Empatica watch over the trip time was graphed to 
understand how the driver’s EDA changed during the trip (Figure 60).   

 



 

Figure 16. Photo. Changes in EDA over time for the Smart Roads driver.  
 
The points of interest in the EDA graph are the six peaks in phasic skin conductance response, or 
the faster varying process that fluctuates within seconds and minutes and the general shift of the 
tonic skin conductance level, or the slower varying process that fluctuates more slowly across 
time. The first three peaks and the general increase in EDA amplitude line up with the times 
where the driver was outside of the vehicle helping with the pedestrian setup (13:14 to 13:17; 
13:30 to 13:40; 13:50 to 14:00). The fourth peak around 14:10 corresponds with the stretch break 
the driver took outside of the vehicle, which may be responsible for the peak in EDA amplitude. 
Interestingly, the mental math trials occurred from 14:20–14:29, which corresponds with the fifth 
peak. Although there was no indication of increased mental workload on the HR graph, there is 
an indicator on the EDA graph of increased arousal. The final, sixth, peak lines up with the time 
where the driver left the closed test track and encountered live traffic while dropping the truck 
off at another location. 

Port Testing: During shipyard testing, the driver was not instructed to complete specific 
behaviors. Instead, the driver was monitored while working as a safety operator. The behaviors 
listed in Table 35 are self-reported behaviors the driver completed during the drive. These were 
reported in an interview after the drive.   



Table 7. Driver self-reported behaviors during drive. 

Behaviors reported by driver during drive Collective time spent on task 

Talking on a walkie-talkie 10 minutes 

Looking at forward roadway 30 minutes 

Drinking water  3 minutes 

Looking at cellular device 10 minutes  

Checking mirrors 30 minutes  

The context of the drive is important for interpreting these results. The vehicle had a top speed of 
12 mph around the yard. Additionally, the vehicle alternated between stop and movement during 
the loading and unloading procedures. The driver would often be sitting in the truck waiting to 
be loaded or unloaded, where they would look for nearby vehicles, which did not involve 
looking at the forward roadway. The driver also used a walkie-talkie instead of a handheld cell 
phone device for communications with other yard operators such as forklift drivers. The operator 
explained that the cellular device use was because the truck was controlled partially by an app on 
the mobile device.  

The number of alerts is documented for each of the 11 tasks listed in Table 34. The results are 
included in Table 36.  

Table 8. Number of alerts for each of the 11 tasks. 

Smoking Detected Distraction Detected Microsleep 

1 89 39 

The device alerted once to smoking; however, the driver did not smoke during the drive. There 
were 89 instances of distraction detected during the drive and 39 instances of microsleep 
detected. The driver reported a high level of distraction during the drive but did not report feeling 
tired.  

From the Empatica watch, the BPM over the trip time was graphed to understand how the 
driver’s heart rate changed during the trip (Figure 61).   

 



 

Figure 17. Graph. HR in BPM for during the shipyard trip. 

The points of interest on the BPM graph are the two spikes in HR. Unfortunately, due to privacy 
concerns, the driver was not recorded during the drive, so it is unclear exactly what caused the 
two spikes. However, the research team was present in the yard in a separate vehicle during the 
drive and was able to listen to the walkie-talkie communication between the yard operators. 
During the drive, there were several times where the truck got stuck on the ice and needed to be 
put in manual mode to be driven. Speculatively, the spikes in HR could be caused by the shift 
from monitoring to manual driving.  

The EDA amplitude from the Empatica watch over the trip time was graphed to understand how 
the driver’s EDA changed during the trip (Figure 62).   

 



 

Figure 18. Graph. Empatica EDA amplitudes over trip duration. 

Compared to Figure 60, the Figure 62 graph has a much smaller vertical range. External factors 
such as temperature and humidity can make EDA results inconsistent. In Alaska, the temperature 
was very cold, and the humidity level was very dry, which may have impacted the driver’s EDA 
amplitude. Based on the lack of baseline and no video, it is difficult to produce meaningful 
results from this graph. 

5.4.4.3 Exploratory Conclusions 
Overall, this exploratory research aimed to investigate the capabilities and shortcomings of DSM 
systems and understand how effectively a state-of-the-art DSM system meets the needs of safety 
operator monitoring. Interviews with ADS developers indicated that DSM systems are feature 
sufficient but accuracy deficient, meaning they can detect the desired behaviors, such as 
distraction, but the accuracy of this detection is questionable.  

The results from testing support these anecdotal reports. The device was able to detect 
distraction, drowsiness, and policy violations such as smoking, but these specific testing 
environments produced at least one false alarm and at least one false categorization, which 
threatens accuracy. If these systems are to be integrated into ADS-equipped CMVs, then 
accuracy is paramount to correctly inform the system and protect drivers. For example, in one 
interview with an ADS developer, the representative stated the company has a zero-tolerance 
policy for cell phone use. With this DSM system, there was no way to verify the validity of alerts 
with recorded footage. If a driver was falsely reported to be distracted, this could have negative 
implications for their career. This points towards the necessity for footage review of DSM 
systems or, at a minimum, image captures of instances where the driver is categorized as 



distracted. Another important aspect of inaccurate alerts is false categorization. When a DSM 
system is integrated into a vehicle, if the system inaccurately labels drowsiness as distraction, the 
decision-making vehicle needs to be able to accurately respond to the driver’s state. If the driver 
is categorized as distracted, the system may only provide an alert, whereas if the driver is 
identified as being drowsy, it may trigger the vehicle to pull over. This indicates the need for 
highly accurate monitoring prior to integration.  

The results also underscore the criticality of maintaining context of the DSM systems for 
interpreting results. When comparing testing at the port and on the test track, the vehicle 
environments were completely different. In Alaska, the ADS-equipped CMV drove at a top 
speed of 12 mph with icy road conditions. One of the driver’s duties was to monitor the 
environment for other yard operators getting near the truck. The driver needed to look in many 
directions, which may have increased the number of distraction alerts even though the driver was 
successfully completing his job. On the test track, the driver maintained a speed of 25 mph to 45 
mph on a relatively straight road with clear conditions. When turning the vehicle around, the 
driver looked in the direction of the turn, which was the forward roadway, but the systems often 
alerted to this as being distraction. Meaning, even though the driver was looking where the 
vehicle was going, the device categorized these instances as distraction because the driver was 
not looking “straight.” These types of false alerts may discourage drivers from accepting DSM 
systems because they may feel they are doing their job correctly, while the alerts indicate 
otherwise. Adjusting the alert sensitivity may help alleviate the onslaught of alerts. If the device 
were integrated into the vehicle and received information about the external context of the 
vehicle, then the DSM system could adjust categorization more effectively.  

The collected physiological data was best interpreted with video context. Without knowledge of 
driver’s activities and timing, there was no real way to decipher the EDA and HR data. In the 
future, if DSM systems intend to integrate physiological data, a way to contextualize the 
information with video is worthwhile. Another consideration of physiological data is the cost. 
Several DSM system manufacturers commented that one major barrier to integration is cost, as 
they are trying to keep aftermarket products scalable to large fleets. When considering the added 
cost of current wearable technologies, this may be economically out of reach for large fleets. 
This points to the differences in OEM versus aftermarket technologies. Although there are 
benefits to including DSM systems as aftermarket products in terms of cost, effectiveness may 
be severely limited without full integration with the vehicle.  

5.4.4.4 Limitations and Future Needs 
As this was an exploratory study, there are several limitations to consider. First, the decision to 
assess a single video-based DSM system, while based on pre-established criteria, does not 
consider the diverse landscape of available DSM technologies. Many DSM technologies 
available require a minimum number of devices to be purchased, which was not cost-effective 
for the project. Additionally, many platforms have a subscription-based service that must be 
purchased to access the dashboard data. By excluding consideration for system carriers that 
mandated minimum purchases or subscription services, the study’s outcomes may not 
holistically reflect the efficacy and applicability of DSM systems across different market 
offerings. Consequently, the findings derived from this study may not be generalizable to other 
DSM systems, potentially limiting their broader relevance and applicability within the field. 



However, the results emphasize the importance of continued research in this field before DSM 
systems can be fully integrated into and trusted to manage ADS-equipped CMV testing 
operations. Additionally, given the rapid evolution of technology, the information collected in 
the technology scan and literature review in October 2022 may not accurately reflect the current 
state-of-the-art in DSM technology. 

The study’s sample size, comprising only two drivers who underwent approximately 2-hour 
trials each, imposes constraints on the depth and breadth of insights gained. While the 
exploratory nature of the study necessitated a focused approach, the limited duration of trials and 
the small number of participants may not adequately capture the nuances of driver behavior and 
fatigue detection. Longer trial durations, coupled with deliberate induction of fatigue, could offer 
a more nuanced understanding of the DSM system’s performance in real-world driving 
scenarios. However, ethical considerations and practical constraints may hinder the feasibility of 
such approaches, highlighting the delicate balance between research objectives and participant 
well-being. 

The study’s data collection process was inherently context-specific, conducted within a specific 
time of day, location, and with a single safety operator. While this controlled approach may 
enhance internal validity, it simultaneously compromises the external validity and 
generalizability of the study’s findings. Future research endeavors should strive to broaden the 
scope of data collection across diverse driving scenarios, environmental conditions, and more 
participants to better understand the robustness and adaptability of DSM systems in real-world 
contexts.  

This study had a limited exploration of false alarms, a common issue with DSM systems. While 
acknowledging the varying sensitivity levels of DSM systems in detecting specific driver 
behaviors, the study’s scope did not include a detailed examination of false alarm rates and their 
implications for driver safety and system usability. Future studies might prioritize comprehensive 
evaluations of false alarms to elucidate their prevalence, underlying causes, and potential 
mitigation strategies. 

The lack of integration between the DSM technology and the vehicle’s ADS presents another 
significant limitation. Integration of DSM systems with ADS holds promise for enhancing driver 
safety and overall system effectiveness. However, fully integrating the two DSM systems with 
one another and the vehicle was outside of the scope of the project. The absence of such 
integration limits the understanding of the synergistic effects between DSM alerts and existing 
ADS vehicle safety features. Similarly, the lack of integration between different DSM systems 
hinders comparative analyses and insights into their relative performance and reliability. 

Finally, the study’s reliance on smart watches for physiological measurements introduces 
inherent limitations in accuracy compared to medical-grade devices. The absence of validation 
studies to assess the accuracy and reliability of the smartwatch-based measurements underscores 
the need for caution when interpreting the study’s findings. Future research endeavors should 
prioritize rigorous validation studies to ensure the integrity and validity of the physiological data 
collected. Additionally, to assess individual differences, it is important to capture a baseline per 
participant to interpret the results more accurately.  



 

Overall, while acknowledging these limitations, the study’s findings offer valuable insights into 
the performance and usability of DSM systems in real-world driving scenarios. By addressing 
these limitations and incorporating them into future research endeavors, we can advance our 
understanding of DSM technology and its role in enhancing safety and well-being for safety 
operators and other road users. 
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